
1. Introduction
As Arctic sea ice extent (SIE) has declined and socio-economic activity in the Arctic has increased over recent 
decades, forecasts of Arctic sea ice have become increasingly relevant. The Sea Ice Outlook (SIO) is a seasonal 
forecast effort of September Arctic sea ice that emerged from a meeting of Arctic researchers in autumn 2007 
following the first extreme September SIE low in the satellite record, with the goal of galvanizing the commu-
nity to explore seasonal forecasts of Arctic sea ice. Since 2008, the SIO has collected, analyzed, and dissemi-
nated seasonal forecasts of September Arctic sea ice initialized in the preceding summer months (early June, 
July, and August over 2008–2022, and early September since 2021). The SIOs attract contributions spanning 
diverse methods and models and have advanced our understanding by identifying the nature of the errors in 
seasonal sea ice forecasts. Early estimates showed that the multi-model median SIO forecast skill was limited 
(Blanchard-Wrigglesworth et al., 2015; Hamilton & Stroeve, 2016; Stroeve et al., 2014) and only slightly better 
than a benchmark forecast produced by a linear trend climatology. Predicting extreme states, when observed SIE 
is much greater or lower than expected from the long-term trend, has proven challenging. These early estimates 
of SIO forecast skill were however conditioned by the short record available and the presence of 2 years with 
extreme forecast errors (2012 and 2013).

While the low skill could be due to inherent predictability limits associated with unpredictable summer 
Arctic weather or other factors, such as errors in the model initialization fields, input observations, ensemble 
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Plain Language Summary We have collected, analyzed, and disseminated seasonal forecasts of 
September sea ice over 2008–2022. Here, we analyze the skill of these forecasts. We show that individual 
forecasts of September sea ice extent (SIE) have limited skill, but the median forecast shows skill that is at least 
as good as a statistical benchmark. Overall the skill is lower than expected from existing retrospective forecasts. 
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construction, coupled model biases, or a relatively small sample size, the SIO skill over 2008–2014 was lower 
than the skill in retrospective forecasts (forecasts initialized in the past, e.g., Chevallier et  al.,  2013; Msadek 
et al., 2014; Sigmond et al., 2013; Wang et al., 2013), and in potential (perfect-model) predictability studies (e.g., 
Blanchard-Wrigglesworth et al., 2015; Bushuk et al., 2018; Tietsche et al., 2014).

To coincide with the end of the second phase of the Sea Ice Prediction Network (SIPN2), which currently hosts 
and organizes the SIO, here we update our skill assessment of September SIE forecasts over the full 15 yr 2008–
2022 period. We also explore the skill of forecasts of spatial fields over 2014–2022, the impact of initial condi-
tions on SIO forecasts, and the impact of summer weather on forecast error.

2. Data
Two types of forecasts are submitted to the SIO. The first type is a September pan-Arctic SIE forecast (i.e., 
one value per contributor for a given year and initialization), which has been regularly submitted to the SIO 
since 2008. Figure 1a shows the multi-model SIO forecast median (hereafter referred to as SIO median) over 
2008–2022 using all initialization months, and Figure S1 in Supporting Information S1 shows the total number 
of forecast contributions per year. The forecasts are classified according to forecast method: dynamical (produced 
by dynamical models), statistical, mixed (forecasts produced by a combination of dynamical and statistical), and 
heuristic (such as expert estimates and pools). The total number of forecasts over 2008–2022 is 1,294 forecasts 
(about 85 per year on average), with a gradual increase in the number of forecasts over 2008–2015 and over 
100 forecasts per year over 2015–2022. Recognizing that for most stakeholders pan-Arctic SIE is a metric of 
limited use, the SIO has encouraged forecasts of Sea Ice Probability (SIP) since 2014, which is the second type 
of forecast. SIP is defined as the fraction of ensemble members in an ensemble forecast with September ice 
concentration in excess of 15%. Over 2014–2022, the SIO received 233 forecasts of SIP (Figure S2 in Support-
ing Information S1), of which 179 are from dynamical models and 60 from statistical models. To evaluate the 
forecasts with observations, we use the NSIDC Sea Ice Index for SIE from 1979 to present (Fetterer et al., 2017, 
updated 2022), the NSIDC sea ice concentration (SIC) CDR product (Meier et al., 2021b) for 2008–2021 and the 
NSIDC Near-Real-Time SIC product (Meier et al., 2021a) for 2022. For atmospheric geopotential data, we use 
the ERA-5 reanalysis (Hersbach et al., 2020).

3. Skill of September Extent Forecasts
The root-mean-square errors (RMSEs) for SIO forecasts from 2008 to 2022 as well as two benchmark forecasts 
(a linear trend climatology forecast and a damped anomaly forecast) are shown in Figure 1b. Benchmark fore-
casts are used to assess how well forecasts perform against simple alternatives, a bare-minimum level of skill 
expected in environmental forecast systems (e.g., Collins, 2002). The linear trend climatology forecast (SIEtrend) is 
constructed by projecting the long-term trend of past observed September SIE (from 1979 to 1 yr previous to the 
one being predicted) to the year being predicted. A second, slightly more sophisticated benchmark forecast that 
takes advantage of the seasonal memory of SIE anomalies (Blanchard-Wrigglesworth et al., 2011) is a damped 
anomaly (auto-regressive of order 1) forecast produced by multiplying the detrended SIE anomaly at the initiali-
zation time (the 1st of each month) with the correlation of SIE anomalies at the initialization time with September 
SIE anomalies, weighted by the ratio of the standard deviation of September SIE to the standard deviation of SIE 
on the initialization date. This anomaly is added to SIEtrend to construct the AR-1 damped anomaly forecast as 
shown in Equation 1. To forecast each year we only use past years' SIE from 1979 onwards and all SIE timeseries 
are detrended prior.

SIE𝑡𝑡𝑡𝑡𝑡𝑡𝑡=𝑛𝑛 = SIE
′
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where t is forecast initialization time (1st of the month), sep is September, n is the year being forecast, σ is the 
standard deviation operator, and primes represent detrended anomalies.

Figure 1b reveals that the SIO median forecast skill is comparable to that of a damped anomaly forecast for 
July and August initialized forecasts, and slightly better for the June forecasts. This skill metric shows a slight 
improvement as compared to the early SIO record, 2008–2014 (Blanchard-Wrigglesworth et al., 2015). Forecasts 
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from the complete record are not able to consistently beat the damped anomaly benchmark. Individually, statis-
tical forecasts show slightly better skill than dynamical forecasts, yet neither method beats damped anomaly 
forecasts for all lead times. The RMSE of September initialized forecasts in 2021–2022 was lower than forecasts 
initialized earlier in the summer, yet greater than that expected from the damped anomaly forecast (see below).

Comparison of the observed September SIE and the SIO median forecasts shows a relationship between 1 yr 
observed value and the following year's SIO median forecast (Figures 1a and 1c), as suggested for earlier SIO 
periods (Lukovich et al., 2021). The correlation between same-year observed September SIE and SIO median 
forecasts is r = 0.27 and increases to r = 0.86 when comparing 1 yr lagged SIO median forecasts to observations. 
This is unexpected, as there is no significant correlation in observations between one year's September SIE and the 
next (the detrended 1 yr lag correlation of September SIE is r = 0.13), and suggests forecasts are pre-conditioned 
by the previous year's observed SIE. We find this to also be the case across dynamical and statistical models (not 
shown), and when 2013/2014 forecasts (2012/2013 observations) are removed from the analysis (1 yr lagged 
correlation of r = 0.77). No satisfactory explanation has been found yet to explain this unexpected behavior.

Figure 1. (a) September sea ice extent (SIE) and Sea Ice Outlook (SIO) median and Interquartile Range (IQR) forecasts for all initialization months, 2008–2022, 
(b) RMSE values of SIO forecasts for June through August initializations (2008–2022), and September initialized forecasts (2021–2022) for the SIO median forecast 
(blue), dynamical models (red), statistical models (magenta), a damped anomaly (AR-1) forecast (dashed black) and a linear trend forecast (solid black). (c) as in (a), 
but showing observed September SIE in previous year, and (d) observed September SIE deviation from the expected linear trend value (x-axis) and June SIO median 
forecast error (y-axis).
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Figure 1d shows the June SIO median forecast error against the observed SIE deviation relative to SIEtrend. A 
significant negative correlation exists (r 2 = 0.46), showing that SIO forecasts struggle to predict anomalous years: 
SIO errors are larger when observations deviate far from the long-term trend, as found in the first half of the SIO 
period (Hamilton & Stroeve, 2016).

In 2021, the SIO began inviting forecasts of September SIE anomalies, calculated relative to models' adopted 
baseline trend (e.g., the trend in historical observations, model hindcasts, etc.), motivated by the prospect of 
reducing SIO forecast uncertainty and error that may originate from models having different trends, mean states, 
and post-processing methodologies. Figure S3 in Supporting Information S1 shows the September SIE and SIE 
anomaly forecasts for the SIO models that provided both forecasts in 2021 and 2022, together with the forecast 
error, forecast spread, and RMSE. While the sample size is small, SIE anomaly forecasts are no more accurate 
than SIE forecasts, and the forecast spread is not reduced.

3.1. September 2021 and 2022 Extent Forecasts

To test whether forecasts of September SIE would converge to a higher skill at shorter lead times, the SIO began 
inviting forecasts initialized in early September 2021. Figures 2a and 2c show the distribution of forecasts in 2021 
and 2022 for all four initialization months, clustered by forecast method (dynamical and statistical). SIO forecasts 
in 2021 showed comparable levels of skill compared to the full SIO period (Figure 1b), and only showed modest 
improvement from June through August (RMSEs of 0.59, 0.58, and 0.52 million km 2 SIE for June, July, and 
August SIOs respectively, with little difference across forecast methods). September SIO forecasts were slightly 
more skillful (RMSE for the SIO median of 0.34 million km 2 SIE), yet the forecast spread was still significant 
(ranging from 3.8 to 5.17 million km 2 SIE), with several forecasts of September SIE below 4.5 million km 2. To 
further assess these forecasts, we show an additional benchmark forecast of September 2021 SIE based on the 
observed 31 August 2021 SIE and past (1987–2020) daily changes of SIE between 31 August and 30 September 
(Figure 2b). These forecasts (shown as timeseries from which we obtain monthly SIE averages in Figure 2b) show 
that, on 31 August 2021, one could have expected September 2021 SIE values to be in the 4.9–5.4 million km 2 
range. September forecasts below these values imply record rates of sea ice loss during September and can be 
regarded as physically improbable. We emphasize that 15 of 20 September 2021 SIO forecasts were below the 
benchmark forecasts, illustrating that even at short lead times SIO forecasts are struggling to show the expected 
skill from simple yet physically robust statistical relationships in the observed record of SIE.

The same analysis for the September 2022 SIO forecasts (Figures 2c and 2d) shows better skill overall, despite 
the near identical September SIE (4.91 million km 2 in 2021 and 4.87 million km 2 in 2022) and 31 August SIE 
in both years. Focusing on the September 2022 SIO forecasts shows a narrower spread (4.49–5.12 million km 2) 
compared to September 2021 SIO, although several forecasts are still lower than the benchmark forecast range.

3.2. Spatial Skill Forecasts

To assess the skill of SIP forecasts, we calculate the Spatial Probability Score (SPS, Goessling & Jung, 2018), 
defined as the spatial integral of the local Brier Score. We calculate the SPS of each SIP submission over 2014–
2022 and the SPS of the multi-model mean SIP forecast for each forecast solicitation. Since models submit SIP 
forecasts on native grids, all forecasts and observations are regridded to a common 1° × 1° latitude-longitude 
grid. To provide a benchmark forecast, we produce a linear trend climatology SIP forecast by projecting at each 
grid cell the linear trend of past September SIC to the year being forecast. Figure 3 shows the SPS for all SIP 
submissions, the model-mean forecast SPS and the benchmark SPS. Overall, individual submission SPS ranges 
between 0.5 and 1.8 million km 2, which are significantly higher than the RMSE values shows in Figure 1. This 
is expected due to compensating positive and negative regional errors of SIC in the SIP forecasts that cancel out 
when calculating a pan-Arctic SIE, and has been seen in previous studies comparing forecasts of pan-Arctic SIE 
with spatial field forecasts (e.g., Goessling & Jung, 2018). The multi-model mean SPS forecast is consistently 
among the more skilled, or most skilled forecasts. The linear trend climatology SPS forecast varies in skill 
between 0.5 and 1 million km 2. In some years, over half of the individual models beat the linear climatology 
benchmark (e.g., 2018, 2020, 2021), whereas in other years few individual models beat the benchmark (e.g., 
2017, 2019). Considering the mean SPS forecasts over 2014–2022, the multi-model SPS forecast amply beats 
linear trend climatology, yet the individual forecasts do not. Nevertheless, there is an increase in the number of 
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Figure 2. (a, c) Sea Ice Outlook (SIO) forecasts in 2021 and 2022, the dots represent individual forecasts, and the thin lines the median forecast for each forecast 
method, and (b, d) forecasts of September 2021 and September 2022, showing the benchmark forecasts that use the observed sea ice extent (SIE) on 31 August and 
past sea ice extent tendencies between 31 August and 30 September, represented by the cyan-through-red timeseries (the labeled years indicate the year from which the 
September tendencies are sampled, note all previous years from 1987 onwards are used). The benchmark September SIE forecasts are shown by the cyan-red circles 
(“Benchmark”), with the observed 2021 and 2022 SIE values in black. September SIO forecasts for each year are shown in the rightmost column.
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forecasts that beat the benchmark each year over 2014–2022, which may evidence an improvement in the true 
skill of the forecasts over time.

3.3. The Role of Initial Conditions

Poor forecast skill may be due to poor initial conditions and/or biased model physics. To further explore the 
spread and skill of SIO forecasts, the SIO has in recent years invited submissions of sea ice forecast initial condi-
tions (SIC and sea ice thickness - SIT), motivated by the known predictor value of these variables for seasonal sea 
ice forecasts (e.g., Day et al., 2014; Lindsay et al., 2008). Figure S3 in Supporting Information S1 and Figures 4a 
and 4b show the initial conditions for SIC and SIT and for total sea ice volume (SIV) as a function of initiali-
zation date in 2020 and 2021 (note that SIO contributors may initialize their forecasts on different days, even 

Figure 3. SPS of Sea Ice Probability (SIP) forecasts 2014–2022. Each round dot represents a single forecast (blue dynamical model, red statistical model), the black Xs 
represents the model-mean SIP forecast skill, and the maroon line represents the skill of a linear climatological SIP forecast for each year. The bottom right panel shows 
the percentage of individual model forecasts (excluding the September initialized forecasts in 2021 and 2022) that beat climatology each year.
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if all contributions have the same early summer month submission deadlines). Figure 4c shows the relationship 
between initialized SIV and the September extent SIO forecasts for the models that provided initial conditions. 
These figures show two main results: (a) SIO models generally agree in their SIC initial conditions, yet show 
large spread in their SIT (and thus SIV) initial conditions, and (b) there is a positive correlation between the fore-
casts' initialized SIV and their September SIE forecasts.

3.4. Is There a Relationship Between Summer Weather and Forecast Error?

Throughout the SIO effort, it has been hypothesized that (a) summers with anomalous atmospheric circulation 
result in anomalous September SIE, (b) that these summers' anomalous circulations are generally unpredictable at 
seasonal lead times, and (c) that the SIO sea ice forecast error (especially for forecasts in early June or July) is larger 
during these summers, as the SIO forecasts are not able to skillfully forecast the anomalous atmospheric circula-
tion. We address this question by comparing the SIO error from June forecasts to the mean summer atmospheric 
circulation. To characterize the state of the summer circulation that impacts September SIE, we first regress June 
through September (JJAS) mean 500 hPa geopotential heights on the September SIE over 1979–2021 after detrend-
ing both data sets. This atmospheric pattern (Figure 5a) shows that after summers with anomalously low 500 hPa 
heights over the Arctic (i.e., cyclonic circulation), September SIE tends to be anomalously high, and vice versa, as 
previously found in the literature (e.g., Ding et al., 2017; Ogi et al., 2008). Next, we characterize each summer's 
circulation pattern over 2008–2022 by calculating the area-weighted pattern correlation and regression coefficient 
of each summer's 500 hPa anomalies with the atmospheric pattern in Figure 5a. These metrics characterize the sign 
and amplitude of the atmospheric circulation anomalies in terms of the pattern that optimally impacts September 
SIE. Finally, we correlate the pattern correlations and regression coefficients with the SIO error from June forecasts 
(Figures 5b and 5c). We find a relationship between JJAS atmospheric circulation and June SIO error. Summers 
when the pattern favored a positive sea ice anomaly (represented by a positive pattern correlation or regression coef-
ficient, such as 2013, 2016, or 2017) tend to show negative SIO errors, as expected if the forecasts cannot predict the 
JJAS circulation patterns, and vice versa (positive June SIO errors when the JJAS atmospheric circulation favors sea 
ice loss, such as 2015 or 2020). Nevertheless, the correlations between the atmospheric circulation patterns and the 
SIO error are modest (r = 0.4 and r = 0.54 for the pattern correlation and regression coefficients respectively, only 
the latter is significant at the 95% level), illustrating that other factors beyond unpredictable summer atmospheric 
circulation—such as initial conditions and model physics—play a role in the SIO forecast errors.

4. Discussion and Conclusions
The SIO has created an active sea-ice seasonal forecasting network over 2008–2022, and has collected and distrib-
uted over 1,200 forecasts of September SIE. We have found that the forecast skill of September SIE is modest. 

Figure 4. (a, b) Total sea ice volume on the date of initialization for Sea Ice Outlook (SIO) forecasts that shared their initial conditions in 2020 and 2021, the three 
vertical lines are 1 June, 1 July, and 1 August, and (c) the relationship between sea ice volume at initialization and predicted September sea ice extent (SIE), clustered by 
July and August SIO contributions in 2020 and 2021.
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Figure 5. (a) The regression of June through September (JJAS) 500 hPa heights on September sea ice extent over 1979–2022 
(in m per 10 6 km 2), anomalous JJAS 500 hPa heights (in m) over 2008–2022, the titles show the pattern correlation (PC) 
and regression coefficient (RC) with the regression pattern in the top left panel. Only values north of 60°N are shown. (b, 
c) Scatter plots of the June Sea Ice Outlook (SIO) median error (x-axis) and the JJAS anomalous atmospheric circulation, 
characterized by pattern correlation (b) and regression coefficient (c).
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Individual dynamical and statistical forecasts show RMSEs of 0.7–0.5 million km 2 in forecasts submitted from 
early June to early August, which are less skillful than a damped anomaly (AR-1) benchmark forecast, and whose 
RMSE is 0.6 million km 2 on 1 June and 0.4 million km 2 on 1 August. The SIO median forecast is slightly more 
skilled than individual forecasts—likely due to error cancellations—and is as skilled or slightly more skilled than 
a damped anomaly forecast. Some individual September SIE forecasts initialized in early September in 2021 and 
2022 are physically improbable and imply unprecedented rates of sea ice loss during September. These findings 
suggest that some dynamical SIO models are making notable errors in their initialization of SIE and statistical 
models may not be using the latest daily SIE observations when producing their forecasts and/or may be poorly 
calibrated.

As in past studies assessing the skill of the first half of the SIO (Blanchard-Wrigglesworth et al., 2015), we 
find that these skill scores are lower than expected from existing retrospective forecasts (hindcasts) of Arctic 
September SIE (e.g., Chevallier et al., 2013; Msadek et al., 2014; Sigmond et al., 2013; Wang et al., 2013), and 
illustrate known gaps between operational and potential sea ice forecast skill (Bushuk et al., 2018). Why this 
is the case is unclear. It is not possible to use the SIO data set to assess the skill of individual forecast model 
systems throughout the SIO period, since forecast models and initialization methods are updated regularly, and 
thus even forecasts from the same modeling centers are produced by different forecast systems in different years. 
In order to assess the skill of individual forecast model systems that submit to the SIO and to compare forecast 
skill across individual models an SIO retrospective forecast effort is needed. We are currently producing such 
an effort.

We have also assessed the skill of spatial forecasts by calculating the SPS of September SIP forecasts. The mean 
SPS of SIO forecasts is 1 million (0.8 million) km 2 for June (August) SIOs, which is no more skilled than the 
SPS of a linear trend climatology benchmark forecast (0.8 million km 2). The SPS of the multi-model SIP forecast 
(0.6 million km 2 for the June SIO, 0.4 million km 2 for the August SIO) is significantly more skilled, illustrating 
the value of producing multi-model ensemble forecast system in which the ensemble-mean offers significant skill 
over a linear trend climatology forecast. While individual forecasts can fail to beat a linear trend climatology 
forecast benchmark, it is encouraging to see an increase over 2014–2022 in the proportion of forecasts that beat 
the benchmark.

A limited number of forecast initial conditions of SIC and SIT have been submitted to the SIO, which show a 
large spread in the SIV of the initial conditions that is positively correlated with their September SIE forecasts. 
It is likely that some of the forecast spread across the SIO is due to different initial conditions used by differ-
ent modeling centers. In addition, the spread in the initialized SIV is dominated by spread in SIT (rather than 
SIC), which is likely due to SIC being better observed by remote sensing platforms than SIT and more sophisti-
cated schemes for assimilating SIC into forecast models compared to SIT. Nevertheless, even when SIO models 
are initialized with the same SIT in controlled experiments, September SIE forecasts can show large spread 
(Blanchard-Wrigglesworth et al., 2017), and it is likely that different model physics and forecast post-processing 
methods are also contributing to forecast spread across models in the SIO.

Finally, we also find that the error in the SIO is affected by summer atmospheric circulation patterns. In years 
when the summer circulation patterns favor high (low) September SIE, SIO errors tend to be negative (positive). 
The relationship is significant yet modest and shows that other aspects discussed above, such as initial conditions, 
model physics, and forecast post-processing are leading to SIO forecast error.

Data Availability Statement
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org/10.7265/tgam-yv28, NSIDC Sea Ice Index (Fetterer et al., 2017, updated 2022) data are available at https://
doi.org/10.7265/N5K072F8, ERA-5 data (Hersbach et al., 2020) are available at https://www.ecmwf.int/en/fore-
casts/dataset/ecmwf-reanalysis-v5, SIO forecast data are available at https://www.arcus.org/sipn/sea-ice-outlook/
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